Творец вычислительной машины блез паскаль. Лекция: Счетная машина Блеза Паскаля Счетная суммирующая машина

Такое явление, как давление присутствует в нашей жизни почти везде, и нельзя ни упомянуть о известном французском ученом, Блезе Паскале, который придумал единицу измерения давления – 1 Па. В этой статье мы хотим рассказать про выдающегося физика, математика, философа и писателя, который родился 19 июня 1623 года во французском городе Овернь (в те времена Клермон-Ферране), а умер в 1662 году – 19 августа.

Блез Паскаль (1623-1662 г.ж.)

Открытия Паскаля до сегодняшнего дня служат человечеству в сфере гидравлики и вычислительной техники. Также Паскаль проявил себя в формировании литературного французского языка.

Блез Паскаль появился на свет в семье потомственного дворянина и с самого рождения имел слабое здоровье, на что врачи удивлялись, как он вообще выжил. Из-за слабого здоровья отец иногда запрещал ему заниматься геометрией, так как имел опасение за состояние здоровья, которое может ухудшиться вследствие умственного перенапряжения. Но такие ограничения не заставили Блеза отказаться от науки и уже в раннем возрасте он доказал первые теоремы Евклида. Но когда отцу стало известно, что его сын сумел доказать 32 теорему, то не смог запретить ему изучать математику.

Арифмометр Паскаля.

В 18 лет Паскаль наблюдал, как его отец составляет отчет по налогам целой области (Нормандия). Это было скучнейшее и монотонное занятие, которое отнимало массу времени и сил, так как расчеты производились в столбик. Блез решил помочь отцу и около двух лет работал над созданием вычислительной машины. Уже в 1642 году на свет появился первый калькулятор.

Арифмометр Паскаля был создан по принципу античного таксометра – устройства, которое предназначалось для расчета расстояния, только немного видоизменённого. Вместо 2 колес использовалось уже 6, что позволило выполнять расчеты с шестизначными числами.

Арифмометр Паскаля.

В данной вычислительной машине колеса могли вращаться только в одном направлении. Производить суммирующие операции на такой машине было легко. Например, нам необходимо высчитать сумму 10+15=? Для этого необходимо вращать колесо пока не выставится значение первого слагаемого 10, потом крутим это же колесо до значения 15. При этом указатель сразу же показывает 25. То есть подсчет происходит в полуавтоматическом режиме.

Вычитание на такой машине невозможно произвести, так как колеса не вращаются в обратном направлении. Делить и умножать арифмометр Паскаля не умел. Но даже в таком виде и с такими функциональными возможностями эта машина была полезной и ей с радостью пользовался Паскаль-старший. Машина производила быстрые и безошибочные математические действия по суммированию. Паскаль-старший даже вложил деньги в производство паскалин. Но это принесло только разочарование, так как большинство бухгалтеров и счетоводов не хотели принимать такое полезное изобретение. Они считали, что при введении таких машин в действие им придётся искать другую работу. В 18 столетии арифмометры Паскаля широко использовались моряками, артиллеристами и ученными для арифметических сложений. Это изобретение саботировалось со стороны финансистов более 200 лет.

Изучение атмосферного давления.

В свое время Паскаль видоизменил опыт Эванджелиста Торричелли и сделал вывод, что над жидкостью в трубке должна образоваться пустота. Он купил дорогостоящие стеклянные трубки и проводил опыты без использования ртути. Вместо неё он применил воду и вино. В ходе экспериментов выяснилось, что вино имеет свойство подыматься выше, чем вода. Декорт в свое время доказывал, что над жидкостью должны располагаться ее пары. Если вино испаряется быстрее воды, то накопившиеся пары вина должны препятствовать поднятию жидкости в трубке. Но на практике предположения Декарта были опровергнуты. Паскаль предположил, что атмосферное давление воздействует одинаково на тяжелые и легкие жидкости. Данное давление способно затолкнуть в трубку больше вина, так как оно легче.

Опыты Эванджелиста Торричелли

Паскаль, который долгое время экспериментировал с водой и вином, установил, что высота подъема жидкостей меняется в зависимости от погодных условий. В 1647 году было сделано открытие, которое свидетельствуют о том, что атмосферное давление и показания барометра зависят от погоды.
Чтобы окончательно доказать то, что высота подъёма столбика жидкости в трубке Торричелли зависит от изменения атмосферного давления, Паскаль просит своего родственника подняться с трубкой на гору Пюи-де-Дом. Высота этой горы составляет 1465 метров над уровнем моря и имеет на вершине меньшее давление, чем у ее подножья.

Так Паскаль сформулировал свой закон: на одном расстоянии от центра Земли – на горе, равнине или водоеме атмосферное давление имеет одинаковое значение.

Теория вероятности.

С 1650 года Паскаль с трудом передвигается, так как был поражен частичным параличом. Врачи считали, что его болезнь связана с нервами и ему необходимо встряхнуться. Паскаль стал посещать игорные дома и одно из заведений имело название «Папе-Рояль», которым владел герцог Орлеанский.

В этом казино судьба свела Паскаля с шевалье де Мере, который обладал необычными математическими способностями. Он поведал Паскалю, что при бросании кости в подряд 4 раза, выпадение 6 составляет более 50%. Мере делая небольшие ставки в игре выигрывал, используя свою систему. Такая система работала, только при бросании одной кости. При переходе на другой стол, где производился бросок пары костей, система Мере не приносила прибыль, а наоборот только убытки.

Такой подход натолкнул Паскаля на мысль, в которой он захотел рассчитать вероятность с математической точностью. Это был настоящий вызов судьбе. Паскаль решил решить данную задачу при помощи математического треугольника, который был известен даже в древности (например, Омар Хайям упоминал о нем), который потом получил название – треугольник Паскаля. Эта пирамида, состоящая из чисел, каждое из которых равно суме пары чисел расположенных над ним.

На этой странице приведены важнейшие события истории развития арифмометров. Следует заметить, что упор сделан не на многочисленные экспериментальные модели, не получившие практического распространения, а на конструкции, производившиеся серийно. Примерно V - VI век до н.э. Появление абака (Египет, Вавилон)

Примерно VI век н.э. Появляются китайские счёты.

1846 г. Счислитель Куммера (Российская империя, Польша). Он сходен с машиной Слонимского (1842, Российская Империя), но компактнее. Был широко распространён во всём мире вплоть до 1970-х годов в качестве дешёвого карманного аналога счёт.

1950-е гг. Расцвет вычислительных автоматов и полуавтоматических арифмометров. Именно в это время выпущена большая часть моделей электрических вычислительных машин.

1962 - 1964 гг. Появление первых электронных калькуляторов (1962 - опытная серия ANITA MK VII (Англия), к концу 1964 электронные калькуляторы выпускаются многими развитыми странами, в т.ч. в СССР (ВЕГА КЗСМ)). Начинается жестокая конкурентная борьба между электронными калькуляторами и мощнейшими вычислительными автоматами. Но на производстве маленьких и дешёвых арифмометров (в основном - неавтоматических и с ручным приводом) появление калькуляторов почти не сказалось.

1968 г. Начато производство Contex-55 - вероятно, самой поздней модели арифмометров с высокой степенью автоматизации.

1969 г. Пик производства арифмометров в СССР. Выпущено около 300 тысяч "Феликсов" и ВК-1.

1978 г. Примерно в это время прекращён выпуск арифмометров "Феликс-М". Возможно, это был последний в мире выпускавшийся тип арифмометров.

1988 г. Последняя достоверно известная дата выпуска механической вычислительной машины - кассового аппарата "Ока".

1995-2002 Механические кассовые аппараты (ККМ) "Ока" (модели 4400, 4401, 4600) исключены из государственного реестра РФ. Видимо, исчезла последняя область применения сложных механических вычислительных машин на территории России.

2008 В некоторых магазинах Москвы всё ещё встречаются счёты...

До определенного момента своего развития, человечество при подсчете предметов довольствовалось природным «калькулятором» -- данными от рождения десятью пальцами. Когда их стало не хватать, пришлось придумывать различные примитивные инструменты: счетные камешки, палочки, абак, китайский суань-пань, японский соробан, русские счеты.

Устройство этих инструментов примитивно, однако обращение с ними требует изрядной сноровки. Так, например, для современного человека, родившегося в эру калькуляторов, освоить умножение и деление на счетах необычайно сложно. Такие чудеса «костяной» эквилибристики сейчас под силу, пожалуй, лишь микропрограммисту, посвященному в тайны работы интелевского микропроцессора.

Прорыв в механизации счета наступил, когда европейские математики начали наперегонки изобретать арифмометры.

Однако, именно Блез Паскаль, который первым не только сконструировал, но и построил работоспособный арифмометр, начинал, как говорится, с нуля. Блистательный французский ученый, один из создателей теории вероятностей, автор нескольких важных математических теорем, естествоиспытатель, открывший атмосферное давление и определивший массу земной атмосферы, и выдающийся мыслитель, оставивший после себя такие не утратившие и по сей день сочинения как «Мысли» и «Письма к провинциалу».

Мне Блез Паскаль интересен как человек и как изобретатель, поэтому я хочу узнать о его жизни побольше и его изобретениях, а особенно о вычислительной машине.

Паскаль (Pascal) Блез (19. VI. 1623 - 19. VII. 1662) - французский математик, физик и философ (см. рис. 2). Он был третьим ребенком в семье. Его мать умерла, когда ему было только три года. В 1632 семейство Паскаля, покинуло Клермонт и отправилось в Париж.

Отец Паскаля имел хорошее образование и решил непосредственно передать его сыну. Отец решил, что Блез не должен изучать математику до 15 лет, и все математические книги были удалены из их дома. Однако любопытство Блеза, толкнуло его на изучение геометрии в возрасте 12 лет. Он обнаружил, что сумма углов в любом треугольнике равна двум правильным углам. Когда это узнал отец, он смягчался и позволил Блезу изучить Эвклида. В декабре 1639 семейство Паскаля оставило Париж, чтобы жить в Роене, куда отец был назначен налоговым сборщиком Верхней Нормандии.

В 1641 (по другим источникам в 1642) Паскаль сконструировал суммирующую машину. Это был первый цифровой калькулятор, который помог его отцу с работой. Устройство, называющееся "Паскалиной", походило на механический калькулятор 1940-ых. Машина Паскаля получила широкое применение: во Франции она оставалась в употреблении до 1799г., а в Англии даже до 1971 года.

Блез Паскаль внес значительный вклад в развитие математики. В трактате "Опыт теории конических сечений" (1639, изд. 1640) он изложил одну из основных теорем проективной геометрии т. н. Паскаля теорему. К 1654 закончил ряд работ по арифметике, теории чисел, алгебре и теории вероятностей. Паскаль нашел общий признак делимости любого целого числа на любое другое целое число, основанный на знании суммы цифр числа, способ вычисления биномиальных коэффициентов (Арифметический треугольник); дал способ вычисления числа сочетаний из n чисел по m; сформулировал ряд основных положений элементарной теории вероятностей.

Труды Паскаля, содержащие изложенный в геометрической форме интегральный метод решения ряда задач на вычисление площадей фигур, объемов и площадей поверхности тел, а также других задач, связанных с циклоидой, явились существенным шагом в развитии анализа бесконечно малых.

В физике Паскаль занимался изучением барометрического давления и вопросами гидростатики. Его философские воззрения колебались между рационализмом и скептицизмом. Занимался он и литературной деятельностью - его "Письма к провинциалу" оказали значительное влияние на развитие французской художественной прозы и театра 17-18 вв. Он был одним из тех учеников, которого недолюбливали одноклассники. Трудно любить того, у кого средний бал был настолько высок, что по сравнению с ним всякий казался глупым.

Паскаль выделялся своими способностями во всём, чему бы он себя не посвятил: физике, гидростатике, гидродинамике, математике, статистике, изобретении, логике, полемике, философии и прозе. Мы говорим о давлении «Паскаля», Принципе Паскаля, и даже компьютерный язык называется Паскаль. Учёные, которые занимаются исследованием истории литературы, называют Паскаля Отцом Французской Прозы, а богословы обсуждают Пари Паскаля, в то время как евангелисты используют его для свидетельствования грешникам о Евангелии. Он знал, что такое боль, он знал, что такое борьба, и он знал Иисуса Христа так глубоко и чувственно, как знают лишь некоторые.

Все свои открытия он совершил, не дожив до сорока лет. Репутация Паскаля как математика возрастала, и, находясь в зените своей славы, он переписывался с другими выдающимися учёными и философами, среди которых были: Ферма, Декарт, Кристофер Рен, Лейбниц, Гюйгенс, и другие. Он продолжал работать над коническими сечениями, проективной геометрией, вероятностью, биноминальными коэффициентами, циклоидами и многими другими загадками того времени. Иногда он даже спорил со своими известными коллегами о сложных проблемах, которые сам он, конечно же, мог решить.

В физике Паскаль преуспел как в теории, так и в эксперименте. В возрасте 30 лет, он закончил Трактат о Равновесии Жидкостей первая систематическая теория гидростатики. В ней он сформулировал свой известный закон давления, который утверждает, что давление одинаково во всех направлениях на всей поверхности данной глубины. Сегодня этот принцип является фундаментальным во многих областях и применяется во многих объектах, таких как: подводные лодки, дыхательные аппараты для плавания под водой, и многие дыхательные устройства. Применяя этот принцип, Паскаль изобрёл шприц и гидравлический пресс.

Проницательный ум Блеза Паскаля помог ему объяснить поднимающуюся жидкость в барометре не как "свойство жидкости, которая не выносит вакуум", но как давление находящегося снаружи воздуха на жидкость в резервуаре. Он выступал против Декарта (который не верил, что вакуум существует) и других последователей Аристотеля того времени. Заметив, что с высотой атмосферное давление понижается, он сделал вывод, что вакуум находится выше, чем атмосфера. Джеймс Кейфер пишет: «Представление таких результатов это своего рода насмешка над оппонентами Иезуитами. Тем самым он отодвинул их методы назад, и обвинил их в том, что они опираются на авторитет Аристотеля в физике, и в то же самое время игнорируют авторитет Писания и отцов, в религии». Его остроумие, ирония, проницательность, знание, и логика, подкрепленная математикой, сделали его работу яркой и наполненной воодушевлением и силы. Кейфер пишет: «Он учил своих соотечественников, как писать так, чтобы люди читали написанный текст с удовольствием». Его работа и в самом деле читается с удовольствием! Его самая известная работа даже не была названа и не была закончена.

Предположительно, в 30 лет он начал работать над «Апологетикой [защитой] Христианской Религии», но, к сожалению, после его смерти, была найдена лишь стопка беспорядочных бумаг, которые были опубликованы под названием Pensees (Мысли). Тем не менее, Паскаль написал достаточно материала, который заставляет верующих и неверующих размышлять о природе человека, грехе, страданиях, неверии, философии, ложной религии, Иисусе Христе, Писании, небесах и аде и многом другом. Пари не просто слепая надежда, что я окажусь на правильной стороне после того, как умру; это осознанный выбор, который приведёт мою жизнь в порядок в будущем и даёт мне мир, радость и цель в настоящем. Паскаль умер в возрасте 39 лет от рака желудка.

Математик Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 г. в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и был вынужден часто выполнять долгие и утомительные расчёты.


Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию.

Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений.

Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением. Первый образец постоянно ломался, и через два года Паскаль сделал более совершенную модель.

Это была чисто финансовая машина: она имела шесть десятичных разрядов и два дополнительных: один поделенный на 20 частей, другой на 12, что соответствовало соотношению тогдашних денежных единиц (1 су = 1/20 ливра, 1 денье = 1/12 су).

Каждому разряду соответствовало колесо с конкретным количеством зубцов. Именно Паскалю принадлежит первый патент на «Паскалево колесо», выданный ему в 1649 году французским королем. В знак уважения к его заслугам в области «вычислительной науки», один из современных языков программирования назван Паскалем.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. Понятно что использование десятичной системы усложняло и без того нелёгкий процесс вычислений.

Тем не менее, примерно за 10 лет Паскаль построил около 50 из самых разнообразных материалов: из меди, из различных пород дерева, из слоновой кости.

Одну из них ученый преподнес канцлеру Сегье (Pier Seguier, 1588-1672), какие-то модели распродал, какие-то демонстрировал во время лекций о последних достижениях математической науки. 8 экземпляров дошло до наших дней. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Машина Паскаля стала вторым реально работающим вычислительным устройством после Считающих часов Вильгельма Шикарда (нем. Wilhelm Schickard), созданных в 1623 году.

Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцати разрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление, для чего, в дополнение к зубчатым колесам использовался ступенчатый валик. "Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно" - с гордостью писал Лейбниц своему другу.

Прошло еще более ста лет и лишь в конце XVIII века во Франции были осуществлены следующие шаги, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники - "программное" с помощью перфокарт управление ткацким станком, созданным Жозефом Жакаром, и технология вычислений, при ручном счете, предложенная Гаспаром де Прони, разделившего численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой. Эти два новшества были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств цифровой вычислительной техники - переход от ручного к автоматическому выполнению вычислений по составленной программе. Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.).

В 1799 году переход Франции на метрическую систему, коснулся также её денежной системы, которая стала, наконец, десятичной. Однако, практически до начала 19-го столетия создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Чарльз Ксавиер Томас де Колмар (англ. Charles Xavier Thomas de Colmar) запатентовал первый механический калькулятор, ставший коммерчески успешным.

В конце XIX века на мировой рынок арифмометров самым решительным образом вторглась Россия. Автором этого прорыва стал обрусевший швед Вильгодт Теофилович Однер (1846-1905), талантливый изобретатель и удачливый бизнесмен. До того, как заняться выпуском счетных машин, Вильгодт Теофилович сконструировал устройство автоматизированной нумерации банкнот, применявшееся при печатании ценных бумаг. Ему принадлежит авторство машины для набивки папирос, автоматического ящика для голосования в Государственной Думе, а также турникетов, применявшиеся во всех судоходных компаниях России.

В 1875 году Однер сконструировал свой первый арифмометр, права на производство которого передал машиностроительному заводу «Людвиг Нобель».

Спустя 15 лет, став владельцем мастерской, Вильгодт Теофилович налаживает в Петербурге выпуск новой модели арифмометра, которая выгодно отличается от существовавших на тот момент счетных машин компактностью, надежностью, простотой в обращении и высокой производительностью.

Спустя три года мастерская становится мощным заводом, производящим в год более 5 тысяч арифмометров. Изделие с клеймом «Механический завод В. Т. Однер, С-Петербург» начинает завоевывать мировую популярность, ему присуждаются высшие награды промышленных выставок в Чикаго, Брюсселе, Стокгольме, Париже. В начале ХХ века арифмометр Однера (см.рис.5) начинает доминировать на мировом рынке.

После скоропостижной кончины «русского Билла Гейтса» в 1905 году дело Однера продолжили его родственники и друзья. Точку в славной истории компании поставила революция: Механический завод В.Т. Однер был преобразован в ремонтный завод.

Однако в середине 1920-х годов выпуск арифмометров в России был возрожден. Наиболее популярная модель, получившая название «Феликс», выпускалась на заводе им. Дзержинского до конца 1960-х годов. Параллельно с «Феликсом» в Советском Союзе был налажен выпуск электромеханических счетных машин серии «ВК», в которых мускульные усилия были заменены электрическим приводом. Данный тип вычислителей был создан по образу и подобию германской машины «Мерседес». Электромеханические машины в сравнении с арифмометрами имели существенно более высокую производительность. Однако создаваемый ими грохот походил на стрельбу из пулемета. Если же в операционном зале работало десятка два «Мерседесов», то в шумовом отношении это напоминало ожесточенный бой.

В 1970-е годы, когда начали появляться электронные калькуляторы -- сперва ламповые, потом транзисторные -- все описанное выше механическое великолепие начало стремительно перемещаться в музеи, где поныне и пребывает

паскаль счетный арифмометр

Заключение

В своей работе я достигла те цели, которые ставила себе раньше. Я узнала о жизни великого учёного Блеза Паскаля. Он внёс значительный вклад в развитие многих наук. Из моей работы понятно, что Блез Паскаль был достаточно образованным человеком, иначе я думаю, что он бы не сделал столько открытий в таких областях знаний как: физика, гидростатика и т.д.

Поверьте, их довольно много. Он является первым создателем вычислительной техники, которая получила широкое применение. Заложенный в её основу принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств. В честь Блеза Паскаля даже назван очень известный язык программирования, который пользуется большой популярностью в сфере профессионального программирования. И из этого следует, что Блез Паскаль был сам по себе гениальный человек, внёсший большой вклад в развитие науки.

Список информационных ресурсов

  • 1. www. calc. ru
  • 2. http://www.icfcst.kiev.ua/museum/Early_r.html
  • 3. http://www.wikiznanie.ru
  • 4. http://www.vokrugsveta.ru/telegraph/technics/189/

Счетная суммирующая машина Блеза Паскаля – это изобретение, удивившее современников, но так и не нашедшее свой круг клиентов. Механизм, в основе имеющий зубчатые колесики, считается одним из прародителей калькулятора.

История развития суммирующих приборов началась еще в ХVII веке. «Паскалина» - это изобретение французского ученого Блеза Паскаля, которое относят к одному из этапов становления вычислительной техники. Паскаль уже в 19-летнем возрасте начал заниматься разработкой своей счетной машины, о которой сейчас можно прочитать на страницах учебников. Это изобретение считается одним из прообразов калькулятора.

«Паскалина»: история возникновения

Создание одной из самых ранних моделей суммирующих машин принадлежит французскому физику и математику Блезу Паскалю. Отец Паскаля был сборщиком налогов, поэтому уже в 19 лет будущий ученый видел, как производятся разные счетные операции. Уже в этот период создаются первые чертежи «Паскалины». Всего на окончательную разработку аппарата ушло 5 лет.

В теории механизм Паскаля был достаточно прост в применении, но из-за слабого развития технической стороны осуществление плана ученого стало сложной задачей, для которой пришлось преодолеть множество трудностей.

Блез хотел, чтобы его суммирующая машина упростила произведение любых сложных расчетов, как человеку образованному, так и тому, кто мало что понимал в арифметике. Паскаль затронул важную проблему, касающуюся не только его семьи, а и развития науки ХVII века.

На протяжении 10 лет исследователь создал более 50 счетных машин, однако лишь малую долю своих изобретений он смог продать. Один из первых готовых аппаратов Паскаль отдал канцлеру Сергье как благодарность за его помощь в научной деятельности молодого Блеза.

Что такое счетная машина Блеза Паскаля?

«Паскалина» - это небольшой ящичек, в котором находится множество соединенных между собой зубчатых колесиков (шестеренок). На каждом колесике были разметки от нуля до девяти. Для того, чтобы произвести операцию сложения необходимо было набрать суммирующиеся числа с помощью нужного количества оборотов шестеренок. Колесики двигались до того момента, пока не появилось нужное число. При полном обороте появившейся остаток (больше 9) шестеренка перекидывала на другой разряд, передвигая соседнее колесо на одно деление.

Использование оборотов колеса для процесса сложения не был новшеством в научной деятельности Паскаля, так как эту идею озвучил еще в 1623 году Вильгельм Шиккард. А действительно изобретением Блеза считается перенос остатка в следующий разряд при полном вращении шестеренки.

В первых «паскалинах» было по пять зубчатых колесиков, а уже с дальнейшей модернизацией технологии в механизме их число доходило до восьми штук, что позволяло работать с большими числами (до 9999999).

Этот механизм активно использовался в разных технических приборах до ХХ века. Его преимуществом было умение автоматического складывания многозначных чисел самим прибором.

Исследователи истории возникновения счетных механизмов считают, что Паскаль создал свою суммирующую машину практически с нуля, так как не был ознакомлен с проектом Шиккарда.

Прибор удивил современную науку, однако из-за высокой стоимости и сложности в эксплуатации так и не смог обрести свою аудиторию. Все же изобретение Паскаля внесло огромный вклад в историю развития вычислительной техники.

Машина Паскаля со снятой крышкой

Механизация и машинизация вычислительных операция – одно из основополагающих технических достижений второй трети 20 века. Подобно тому, как появление первых прядильных машин послужило началом великого промышленного переворота 18-19 веков, создание электронной вычислительной машины стало предвестником грандиозной научно-технической и информационной революции второй половины 20-го. Этому важному событию предшествовала длинная предыстория. Первые попытки собрать счетную машину были еще в 17 веке, а простейшие вычислительные приспособления, типа абака и счет, появились еще раньше – в древности и средневековье.

Хотя автоматическое вычислительное устройство относится к роду машин, его нельзя поставить в один ряд с промышленными машинами, скажем, с токарным или ткацким станком, ведь в отличие от них оно оперирует не с физическим материалом (нитями или деревянными заготовками), а с идеальными, несуществующими в природе числами. Поэтому перед создателем любой вычислительной машины (будь то простейший арифмометр или новейший суперкомпьютер) стоят специфические проблемы, не возникающие у изобретателей в других областях техники. Их можно сформулировать следующим образом: 1) как физически (предметно) представить числа в машине? 2) как осуществить ввод исходных числовых данных? 3) каким образом смоделировать выполнение арифметических операций? 4) как представить вычислителю введенные исходные данные и результаты вычислений?

Одним из первых эти проблемы преодолел знаменитый французский ученый и мыслитель Блез Паскаль. Ему было 18 лет, когда он начал работать над созданием особой машины, с помощью которой человек, даже не знакомый с правилами арифметики, мог бы производить четыре основных действия. Сестра Паскаля, бывшая свидетельницей его работы, писала позже: «Эта работа утомляла брата, но не из-за напряжения умственной деятельности, и не из-за механизмов, изобретение которых не вызывало у него особых усилий, а из-за того, что рабочие с трудом понимали его». И это не удивительно. Точная механика только рождалась, и качество, которого требовал Паскаль, превышало возможности его мастеров. Поэтому изобретателю самому нередко приходилось браться за напильник и молоток или ломать голову над тем, как изменить в соответствии с квалификацией мастера интересную, но сложную конструкцию. Первая работающая модель машины была готова в 1642 г. Паскаля она не удовлетворила, и он сразу же начал конструировать новую. «Я не экономил, - писал он впоследствии о своей машине, - ни времени, ни труда, ни средств, чтобы довести ее до состояния быть полезной… Я имел терпение сделать до 50 различных моделей…» Наконец в 1645 г. усилия его увенчались полным успехом – Паскаль собрал машину, которая удовлетворяла его во всех отношениях.

Что же представляла из себя эта первая в истории вычислительная машина и каким образом были разрешены перечисленные выше задачи? Механизм машины был заключен в легкий латунный ящичек. На верхней его крышке имелось 8 круглых отверстий, вокруг каждого из которых была нанесена круговая шкала. Шкала крайнего правого отверстия делилась на 12 равных частей, шкала соседнего с ним отверстия на 20 частей, остальные шесть отверстий имели десятичное деление. Такая градуировка соответствовала делению ливра – основной французской денежной единицы того времени: 1 су = 1/20 ливра и 1 денье = 1/12 су. В отверстиях были видны зубчатые установочное колеса, находившиеся ниже плоскости верхней крышки. Число зубьев каждого колеса было равно числу делений шкалы соответствующего отверстия.



error: Контент защищен !!